If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+39x-180=0
a = 1; b = 39; c = -180;
Δ = b2-4ac
Δ = 392-4·1·(-180)
Δ = 2241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2241}=\sqrt{9*249}=\sqrt{9}*\sqrt{249}=3\sqrt{249}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-3\sqrt{249}}{2*1}=\frac{-39-3\sqrt{249}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+3\sqrt{249}}{2*1}=\frac{-39+3\sqrt{249}}{2} $
| -0.5(8x+12)+15=25 | | 4x+-2x+4=x+10 | | c=180+-1A+-1B | | 8+3h=27 | | 2.7=v+1.4/3 | | 37+105+u+8=180 | | -6x-13=-37 | | 1/3x+4=6x={2,3,4,5} | | 15x+16=16x+25 | | Y1.9;y=2 | | x+17+6x+x+11=180 | | 15x+16=16x25 | | 10x+5=12x(2)+6x | | 74s+106=180 | | 2g=5.02 | | 11=11j+8 | | 66° + x° + 44° = 180° x° = ° | | -0.5(10-8x)-3=18 | | 2s+70=180 | | 8z+100=180 | | -11y=-9 | | 6x+24=2x+44 | | 43p+1-5=-16+6p | | y+6.41=10.7,y= | | 16u+148=180 | | -3=b+10 | | 2v=12.74 | | 3.1x+6.2=7/12 | | 34+(-10x)=-15 | | 8x+17)=(12x-5)° | | 11*n=143,n= | | 60p=180 |